Extremal Permutations in Routing Cycles

نویسندگان

  • Jinhua He
  • Louis A. Valentin
  • Xiaoyan Yin
  • Gexin Yu
چکیده

Let G be a graph whose vertices are labeled 1, . . . , n, and π be a permutation on [n] := {1, 2, . . . , n}. A pebble pi that is initially placed at the vertex i has destination π(i) for each i ∈ [n]. At each step, we choose a matching and swap the two pebbles on each of the edges. Let rt(G, π), the routing number for π, be the minimum number of steps necessary for the pebbles to reach their destinations. Li, Lu and Yang proved that rt(Cn, π) 6 n− 1 for every permutation π on the n-cycle Cn and conjectured that for n > 5, if rt(Cn, π) = n−1, then π = 23 · · ·n1 or its inverse. By a computer search, they showed that the conjecture holds for n < 8. We prove in this paper that the conjecture holds for all even n > 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutations with extremal number of fixed points

Abstract. We extend Stanley’s work on alternating permutations with extremal number of fixed points in two directions: first, alternating permutations are replaced by permutations with a prescribed descent set; second, instead of simply counting permutations we study their generating polynomials by number of excedances. Several techniques are used: Désarménien’s desarrangement combinatorics, Ge...

متن کامل

The r - cubical lattice and a generalization of the cd - indexRichard EHRENBORG and Margaret

R esum e Dans cet article nous etudions des questions extr emales pour le treillis r-cubique. Pour cela, nous g en eralisons l'index cd du treillis cubique a un index r-cd, que nous appellons (r). Les coeecients de (r) d enombrent les permutations d'Andr e r-sign ees augment ees, g en eralisant d'une mani ere naturelle les r esultats de Purtill qui mettent en rapport l'index cd du trellis cubiq...

متن کامل

Optimal Self { Routing of Linear - Complement Permutations in Hypercubes 1

Optimal Self{Routing of Linear-Complement Permutations in Hypercubes1 Rajendra Boppana and C. S. Raghavendra Dept. of Electrical Engineering{Systems University of Southern California, Los Angeles, CA 90089{0781 Abstract In this paper we describe an algorithm to route the class of linear-complement permutations on Hypercube SIMD computers. The class of linearcomplement permutations are extremely...

متن کامل

Integrated Order Batching and Distribution Scheduling in a Single-block Order Picking Warehouse Considering S-Shape Routing Policy

In this paper, a mixed-integer linear programming model is proposed to integrate batch picking and distribution scheduling problems in order to optimize them simultaneously in an order picking warehouse. A tow-phase heuristic algorithm is presented to solve it in reasonable time. The first phase uses a genetic algorithm to evaluate and select permutations of the given set of customers. The seco...

متن کامل

2 7 Fe b 20 16 Phases in Large Combinatorial Systems

This is a status report on a companion subject to extremal combinatorics, obtained by replacing extremality properties with emergent structure, ‘phases’. We discuss phases, and phase transitions, in large graphs and large permutations, motivating and using the asymptotic formalisms of graphons for graphs and permutons for permutations. Phase structure is shown to emerge using entropy and large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016